. CERN
Data & Storage Services Ll-pa,tmem

New XRootD client plug-ins

t ukasz Janyst

CERN IT Department 4
CH-1211 Genéve 23
Switzerland

www.cern.ch/it

Federated Storage Workshop
XRootD Menlo Park, 11.04.2014 Y

Outline T

Services | Department

 The new client - XRootD 4.0.0
« XrdCl and its API stack

» The plug-in mechanism:

— Where?
_ What? 4"
— How??

— Why?/What for?
— When?

The new XRootD client T

Services | Department

First released with XRootD 3.3.0

New client library: libXrdCl.so

New command line utilities:
— xrdcopy - replacement for xrdcp (the same interface)
— xrdfs - replacement for xrd (new interface)

Default in XRootD 4.0.0:
— Old client (XrdClient) officially deprecated
— xrdcp becomes a symlink to xrdcopy

“Async & stream multiplexing ~ © LT

Department

Services

* The XRootD protocol supports virtual streams

* There may be many requests outstanding and the
server may respond in the order it chooses

* The new client handles responses as soon as they
come calling the user call-back function, the order is
unimportant

4

Thread safe/aware T

Services | Department

Thread #1 \ / Thread #3
Thread #2
* — . CThread #4

- File and FileSystem objects can be safely accessed
from multiple execution threads

* Internally uses a worker thread pool to handle call-
backs

115

Fork safe T

Services | Department

» Can handle forking even when the |O operations
are in progress

* File and FileSystem objects remain valid in both
parent and child

* The operations in the parent continue after the fork

* The objects in the child will run recovery procedure
(like in the case of a broken connection)

S XrdCl AP stack & neighbours ~ “™IT

Serwces Department

- XRootD - core
B XRootD

. External

CopyProcess - ROOT J CMSSW

PostMaster

S XrdCl AP stack & neighbours ~ “™IT

Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

Serwces

PostMaster

- PostMaster - low-level message handling API
— sends messages

— asynchronous - notifies message handlers about sent/
Incoming messages

— notifies about stream status changes (disconnections)

S XrdCl AP stack & neighbours ~ “™IT

Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

Serwces

PostMaster

* File/FileSystem - implement XRootD operations
— user-facing C++ API
— does reads, writes, mkdirs, listings, staging and the like
— asynchronous - call back when response is read

Serwces

S XrdCl AP stack & neighbours ~ “™IT

Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

PostMaster

CopyProcess - implement copy operations
— user-facing C++ API, a library call

— take source/target URLs, couple more parameters and do
the magic

— notify periodically about progress using a call-back
10

S XrdCl AP stack & neighbours ~ “™IT

Department

. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

Serwces

PostMaster

* xrdcopy - the copy command
— translate command line parameters to CopyProcess calls

» xrdfs - the meta-data command
— translate command line parameters to FileSystem calls

11

Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

Serwces

S XrdCl AP stack & neighbours ~ “™IT

PostMaster

 PyXRootD - make the user APls available in Python

— all APls user APls available: File, FileSystem and
CopyProcess

— uses Python callables to handle call-backs
12

S XrdCl AP stack & neighbours ~ “™IT

Department
. XRootD - core
B XRootD
CopyProcess - ROOT j CMSSW

Serwces

PostMaster

* Neighbours - all the purple boxes above and quite
a bit more that did not fit the diagram

— EOS uses a bit of everything
— significant number of packages use XrdPosix interface

13

- XrdCl plug-ins T

Department

Services

* Plug-ins - replace the original implementation
— both for File and FileSystem objects
— all calls can be replaced

— all the layers above can benefit without changing a single

line of code
14

XrdCl user API T

Services | Department

* All xroot protocol requests are implemented as
asynchronous methods

* The calls queue the request and return, never
block

XRootDStatus File::0pen(const std::string &url,
OpenFlags: :Flags flags,

Access: :Mode mode,
ResponseHandler *handler,
uintl6 t timeout)

* The response handler is called when the response
IS ready

» Synchronous versions implemented in terms of

asynchronous ones, with a semaphore
15

~ XrdCl plug-in API =T

Services Department

* The plug-in APl is exactly the same - except for the
virtual keyword

* Only asynchronous calls may be overloaded

virtual
XRootDStatus File::0Open(const std::string &url,
OpenFlags::Flags flags,

Access: :Mode mode,
ResponseHandler *handler,
uintlé t timeout)

16

“Plug-in Manager T

Department

Services

* Process plug-in environment configuration
— covered later in the presentation

- Manage a map between URLs and plug-in factories:
— le. root://eosatlas.cern.ch:1094 D> XrdEosFactory

— factories are objects that instantiate plug-ins (think of: new
XrdEosFile) given URLs

17

root://eosatlas.cern.ch:1094

CERN
Flow T

Services | Department

 File object creation (constructor)

— ask the plug-in manager whether a plug-in for a given
URL is known

— if so, install the plug-in

* File object usage (method calls)
— call the plug-in if it is installed
— call the normal XRootD code if there is no plug-in present

18

- Deployment - config files ek 1]

Department

Services

]==> cat eos.conf
example configuration

url = eosatlas.cern.ch;eoscms.cern.ch
lib = /usr/1ib64/1ibXrdEosClient.so
enable = true

customargl=customvalue?
customarg2=customcalue?2

* The plug-ins are discovered and configured by
scanning configuration files

* There is one config file per plug-in
* It's a set of key value pairs

19

Deployment - search paths T

Department

Services

* The plug-in manager will search for global
configuration files in:

/etc/xrootd/client.plugins.d/

20

- Deployment - search paths T

Department

Services

* The plug-in manager will search for global
configuration files in:

/etc/xrootd/client.plugins.d/

* The global settings may be overridden by
configuration files found in:

~/ .xrootd/client.plugins.d/

21

Deployment - search paths T

Department

Services |

* The plug-in manager will search for global
configuration files in:

/etc/xrootd/client.plugins.d/

* The global settings may be overridden by
configuration files found in:

~/ .xrootd/client.plugins.d/

* Any of the previous settings may be overridden by
configuration files found in a directory pointed to by:

XRD_PLUGINCONFDIR

22

CERNIT

Services

* Plug-ins may be developed and distributed
independently of the XRootD code

* The plug-in manager performs strict interface
version checking
— will refuse to load ABI incompatible plug-ins

* Plug-in package (RPM) needs to contain:

— the plug-in shared library
— a config file in /etc/xrootd/client.plugins.d/

_ Plug-in packaging L

23

~ Primary motivation CERNT

Department

Services

» Stripe files and use erasure
coding to increase fault
tolerance

 Primarily for archiving and
similar use-cases

* Multiple techniques:

RAIN — Hamming parity
Redundant Array — Reed-Solomon error
of Independent correction

Nodes — Low-density parity-check

24

EOS Erasure Coding - now T

Department

Services

Stripe servers Gateway User

* The client needs to see the file as a whole
* File reconstruction needs to be done at a gateway
- CPU and bandwidth scalability issues

25

EOS Erasure Coding-4.0.0 LT

Department

Services

Stripe servers User

When contacting EOS the client is able to execute
specialised code

Can contact the stripe servers directly
Can reconstruct the data at the client machine
Transparently to the users - whatever they are!

26

CERN
Consequences Ll-partmem

Services

* Client plug-ins provide a way for the XRootD
community to play, tinker and hack the client

— exactly what made the XRootD server so successful!
» All possible calls may be overridden

» Everything is transparent to the layers above!

27

Client-side load balancing T

Department

Services

User

Servers

Open multiple files at the same time and fetch data

from the fastest server - CMS-style as presented by
Brian Bockelman at CHEP 2013.

28

“Redirect to other protocols T

Department

Servicgs
file://
root:// . o

- —> 1

User
ceph:// '

Servers

Redirect and transparently handle other protocols if
needed.

29

~ Caching and monitoring T

Department

Services

Server User

Cache the data locally at the user box and re-use
when needed.

Server User

Gather and send back custom monitoring

iInformation to the server.
30

. CERN
Conclusion IT

Services | Department

* The plug-ins are:
— flexible - override all possible calls, do whatever you
want

— independent - development and deployment may be
completely detached from XRootD core

— ready to play with in XRootD 4

— give a possibility to freely experiment and then
Incorporate new things into the core package

31

Data & CERN
Soose | Thanks! T

Services Department

Thanks for your attention!

Questions? Comments?

32

P

Data- & CERN
soeee [Notes i

Services Department

* Most of the artwork in this presentation comes from:
Open Icon Library

33

